

Capacity of Airport Passenger Buildings Prof. Richard de Neufville

Istanbul Technical University

Air Transportation Management

M.Sc. Program

Airport Planning and Management

Module 16

January 2016

Capacity of Airport Passenger Buildings RdN ©

Defining Capacity of Airport Passenger Buildings

• Objectives:

To Present and Explain "Capacity" of Terminals
 Describe latest IATA recommendations

Topics

- Concepts of Capacity
- > Design Tradeoff: Levels of Service (LOS) <-> Cost
- HATA LOS Standards (traditional and 2004 Versions)
- HATA 2014 Recommendations
- > Importance of "Dwell Time"
- Flow Standards
- Summary of KEY POINTS

Two Concepts of Capacity

1. Static: Storage Potential of Facility

• How much can space hold at any moment?

2. Dynamic: Ability of Facility to Process Flows

• How much can we move through this space?

Central Concept for Design of Terminals

Passengers, bags, cargo always Move through Services (for example: Check-in, inspections, departures lounges, etc.)

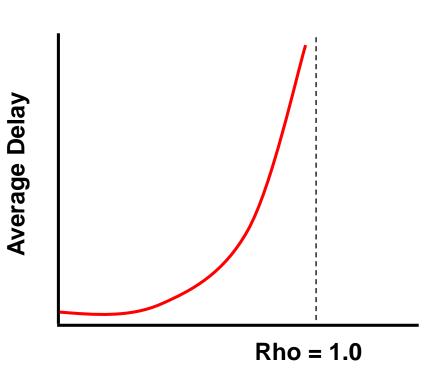
Dynamic Capacity

Dynamic Capacity can be:

- Sustained: Flow over a significant period Example: 3 or 4 hours morning departure of hub-based aircraft, as at Singapore
- **2. Maximum: Flow over a brief peak period** Example: passengers of 1 A380 at customs
- Why this difference?

Because:

- Delays are what makes flow uncomfortable
- It takes time for queues to build up


Dynamic Capacity is variable

- Dynamic Capacity not a fixed amount! Differs from definite Static Capacity See demo with glass
- It depends on "Level of Service", its quality.
 Delays when traffic is high, queues and delays build up, system seems 'full', even if more could jam in
 - Our of the service of the service
 - > Crowding example: what is bus capacity?

Basic Queuing Diagram: Delays

Delays ~ 1/rho


- •Rho = ratio of actual load to nominal maximum capacity
- •As loads on system increase, average delay increases exponentially
- •So practical capacity = less than nominal maximum
- •Caveat: this is steadystate, "sustained" situation...

Basic Queuing: Reliability

Moreover, variance in delays ~ 1/rho

- Variance in delays increases with 1/rho
- System thus becomes less reliable
- To insure meeting deadline (aircraft departure), reduce rho
- Denver Example: rho max ~ 40% for sustainable bag transfer system at this hub

Rho = 1.0

Central Concepts for Design

- "Capacity" determined by acceptable "Level of Service" (LOS)
- Acceptable LOS depends on client

 Premium Passengers demand better LOS

 LCC Passengers satisfied with lower LOS
- Design is tradeoff between
 Cost of facility against benefits of reduced delays and crowding
- IATA recommends: balanced design

Translating LOS into Design

- Basic reference: IATA Airport
 Development Manual
- Three Editions of development
- 1995: set LOS definitions in terms of space; gives good insights
- 2004: extends definitions
- 2014:

Adds Standards for Wait times
Directs Designs to LOS C

Level of Service Descriptions

- 6 Categories: A (best) to F (unacceptable)
- These describe Quality of Service based on Ease of Flow and Quality of Delays
- Traditional view, presented by IATA (Airport Development Manual):

LOS	Flows	Delays	Comfort
A - Excellent	Free	None	Excellent
B - High	Stable	Very Few	High
C - Good	Stable	Acceptable	Good
D - Adequate	Unstable	Passable	Adequate
E - Inadequate	Unstable	Unacceptable	Inadequate
F - Unacceptable	System B	Unacceptable	

IATA LOS Space Standards

(1995 version: Airport Development Manual, 8th ed.)

• Traditional view states LOS standards entirely in term of space: square meters per person

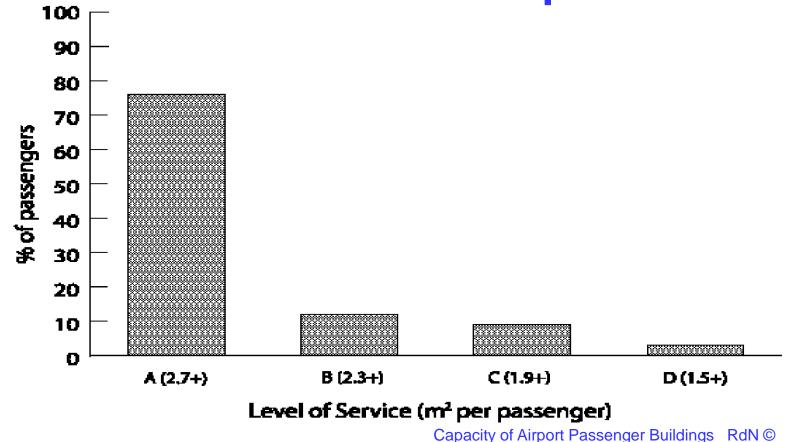
Area	Α	B	С	D	E	F
Wait/circulate	2.7	2.3	1.9	1.5	1.0	
Bag Claim	2.0	1.8	1.6	1.4	1.2	
Check-in Queue	1.8	1.6	1.4	1.2	1.0	
Hold-room	1.4	1.2	1.0	0.8	0.6	
Inspection						

- Left to right: less space means lower LOS
- Top to bottom: more space necessary when people are moving and have bags

Capacity of Airport Passenger Buildings RdN ©

Snake Line at LOS = C

Capacity of Airport Passenger Buildings RdN ©


Snake line at LOS = E

Capacity of Airport Passenger Buildings RdN ©

LOS provided by any space varies

Example Distribution from Toronto
Poor LOS OK for short periods

IATA Standards: Wait / Circulate

(2004 version: Airport Development Manual, 9th ed.)

• Old:

Square meters / Passenger for Level of Service					
Α	В	С	D	E	
2.7	2.3	1.9	1.5	1.0	

• New:

- Distinguishes locations, likelihood of carts
- > References speed

Location	Carts	Space M²/pax	Speed m / sec
Airside	None	1.5	1.3
After check-in	Few	1.8	1.1
Departure area	many	2.3	0.9

IATA Standards: Passport / Hold

(2004 version: Airport Development Manual, 9th ed.)

• **Old**:

Square meters / Passenger for Level of Service					
Α	A B C D				
1.4	1.2	1.0	0.8	0.6	

• New (for hold rooms only):

- Assumes 1.7 m²/pax sitting, 1.2 m²/ standee
- > LOS defined in terms of % of space used

Maximum Occupancy Rate (% of Capacity)					
Α	В	С	D	E	
40	50	65	80	95	

IATA Standards: Bag Claim Area

(2004 version: Airport Development Manual, 9th ed.)

• **Old**:

Square meters / Passenger for Level of Service					
Α	В	С	D	E	
2.0	1.8	1.6	1.4	1.4	

• New:

- Assumes 40% of Passengers use carts
- Has a wider range: more for A, less for E

Square meters / Passenger for Level of Service					
Α	В	С	D	E	
2.6	2.0	1.7	1.3	1.0	

IATA Standards: Check-in Area

(2004 version: Airport Development Manual, 9th ed.)

• Old:

Square meters / Passenger for Level of Service					
Α	В	С	D	E	
1.8	1.6	1.4	1.2	1.0	

• New:

> Reflects impact of number of bags, carts

Row	Carts	Square meters / Passenger for Level of Service				
width	bags	Α	В	С	D	E
1.2m	few	1.7	1.4	1.2	1.1	0.9
1.2111	more	1.8	1.5	1.3	1.2	1.1
1.4 m	high	2.3	1.9	1.7	1.6	1.5
1.4 M	heavy	2.6	2.3	2.0	1.9	1.8

2014 IATA LOS Standards

(Airport Development Manual, 10th ed.)

- 2 important contributions:
 - Adds standards for waiting time
 Directs designers to LOS "C"
- Idea is to replace previous versions.
- Instead of tables, it proposes a computer simulation – Unfortunately this is not transparent, so designers have no easy way to check!
- Thus old standards still useful!

2014 IATA LOS Time Standards

- Sets waiting time standards
 - For areas (departure halls, check-in, security, immigration, bag claim) as for space standards
 For two classes: Economy ; Business/First
- For example, for economy check-in
 + LOS A, B: Wait time < 10 minutes
 + LOS C: Wait time between 10 to 20 minutes
 + LOS D, E: Wait time > 20 minutes
- Note: Wait times must be estimated by simulation! Not verifiable on plans!

2014 IATA LOS Space-Time Matrix

The NEW LoS framework is reflected in a space-time matrix to be used for defining the LoS at processing facilities and corresponding waiting areas.

	1 2 2 2 3	A second second second	SPACE	
1	oS 🌰	Over-Design	Optimum	Sub-Optimum
Para	meters `	Excessive or empty space	Sufficient space to accommodate necessary functions in a confortable environment	Crowded and uncomfortatie
G TIME	Over-Design Overgrovesor	OVER-DESIGN	Optimum	SUB-OPTIMUM Consider Improvements
M WAITING	Optimum Acceptane processing and wafing times	Optimum	OPTIMUM	SUB-OPTIMUM Consider Improvements
MAXIMUM	Sub-Optimum Unacceptative processing and waling times	SUB-OPTIMUM Consider Improvements	SUB-OPTIMUM Consider Improvements	UNDER- PROVIDED Reconfigure

Translating the code: "optimum" = LOS C "over design" = LOS A or B "sub optimum" = LOS D or E

IDEA IS TO FOCUS DESIGNERS ON GOOD SERVICE WITHOUT BEING

Source: BrightTALK "Optimise your airport resources with the new LERA Service Concept" 1 December 2015 Capacity of Airport Passenger Buildings RdN ©

2014 IATA LOS References

- IATA Airport Development Manual, 10th edition, 2014 (list price US\$900)
 → Gives complete tables for wait time standards
- BrightTALK Dec. 2015 sales pitch presentation by IATA consultants:
 - https://www.brighttalk.com/webcast/10625/173 423?autoclick=true&utm_source=brighttalkrecommend&utm_campaign=network_weekly_ email&utm_medium=email&utm_content=colla b

Dwell Time Concept

- Determines Capacity of any space or process
- A Central Concept: Source of Major Problems
- Is Average Time a body is in a space or process
- When a person leaves a space, Replacement can use it
- As people move faster

 Dwell time is shorter
 More replacements can use space in any period

Formula for Space Required

- Space Required, sq. meters =

 (Load, pers./hour) (Std, sq.m./person) (Dwell time, hours)
 (Persons/Time) (Area/Person) (Time) = Area
- Example (from Australia): What space required for passport control of 2000 passengers/hour when maximum wait is 20 minutes? Their answer: 2000 sq. m.

Space Needed = 2000 (1) (1/3) = 667 sq. m.

Formula for Capacity of a Space

• Load, persons per hour =

(Space, sq. m.) / (Std, sq. m. per pers)(Dwell time, hrs)

• Examples:

What is the recommended load (LOS =C) for a waiting room 30x50m, in which transit passengers average 90 minutes?
 Recommended load = (30) (50) / (1.9) (1.5) = 1500 / 2.85 = 527

 \Rightarrow What is crush capacity (LOS = D) of same space? Crush load = (30) (50) / (1.5) (1.5) = 667 pers. per hr.

Flow Standards

In terms of PMM = Persons/Minute/Meter

Type of	Level of Service Standard					
Passageway	Α	В	С	D	Ε	F
Corridor	10	12.5	20	28	37	More
Stairs	8	10	12.5	20	20	More

Capacity of Airport Passenger Buildings RdN ©

Assumptions of Flow Standards

- Two Factors
 - **1. Space per Person**
 - e.g.: 1.9 sq. m. per person for LOS = C
 - 2. Walking Speed
 - e.g.: 66 meters/min = 4 km/hour => Low Dwell Time => High Capacity
- Example: Capacity of Corridor, 5m. wide, 40m. long Dwell time = 40 / 4000 = 0.01 hour Recommended Load, persons per hour = (5) (20) / (1.9) (0.01) = 5,000

Formula for Width of Corridors

- Total Corridor Width Needed, meters = Effective Width + 1.5m. for edge effects
- Effective width = (Persons /Minute) / (PMM)
- Example: What is recommended width of corridor to handle 600 persons per quarter hour, in both directions?
 Effective width = 80 / 20 = 4.0m
 Required width = 4.0 + 1.5 = 5.5m

Note: Corridor capacity is very great! Most corridors are wider than needed ; Architectural considerations dominate

Why Snake Queues?

- What is a Snake Queue? (S-band)
 - > 1 longer line (leading to many servers) instead of many lines, one for each server
- Why might this be better?
 No one stuck behind long delay for a server
- Why might be worse?
 Long line does not look attractive
 Wasted time going from head of queue to open server (can be fixed by pre-positioning of one or two persons in front of each server)

Snake Queue issues

- Snake Queue can reduce average service rate by servers. Why is that?
- Think about how process works:
 - Customer served
 - Agent signals for new customer from snake queue
 - > New customer does not notice right away, then takes time to get to agent...
- How do we solve issue?
- Small one or two person queues between agent and snake queue – becoming standard for US, Canadian immigration

Note: Kiosks change process

- Kiosks = automated check-in machines => CUSS (Common Use Self Service) if common
- Speeds up check-in
 Automated data entry (try to enter "de Neufville")
- Less Staff, Less counter Space
 - > Large check-in halls becoming obsolete
- Disperses Queues
 - > Check-in machines can be anywhere, also at home

Question: are kiosks faster than agents? Not necessarily!

Key Take-aways

- Concepts about capacity:
 - Hanagement decision about tradeoffs between Cost and LOS (crowding, waits)
- IATA Evolution of standards
 - > Tradition standards based on space
 - Hew standards adding wait time and requiring simulation
- Some technical details:
 - 1. Dwell time critical factor
 - 2. Through flows slash dwell time
 - 3. Capacity of corridors enormous